翻訳と辞書
Words near each other
・ Slater Library
・ Slater Martin
・ Slater Memorial Museum
・ Slater menswear
・ Slater Mill Historic Site
・ Slater Park
・ Slater Park Zoo
・ Slater Rocks
・ Slater Street
・ Slater Township, Cass County, Minnesota
・ Slater Walker
・ Slater Wilmhurst Ltd v Crown Group Custodian Ltd
・ Slater Young
・ Slater Zaleski
・ Slater's Ales
Slater's condition
・ Slater's rules
・ Slater, California
・ Slater, Colorado
・ Slater, Iowa
・ Slater, Kentucky
・ Slater, Missouri
・ Slater, Wyoming
・ Slater-Marietta, South Carolina
・ Slater-type orbital
・ Slatersville, Rhode Island
・ Slaterville, Virginia
・ Slater–Condon rules
・ SLATES
・ Slates (EP)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Slater's condition : ウィキペディア英語版
Slater's condition

In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).
Slater's condition is a specific example of a constraint qualification. In particular, if Slater's condition holds for the primal problem, then the duality gap is 0, and if the dual value is finite then it is attained.
==Details==
Given the problem
: \text\; f_0(x)
: \text\
:: f_i(x) \le 0 , i = 1,\ldots,m
:: Ax = b
with f_0,\ldots,f_m convex (and therefore a convex optimization problem). Then Slater's condition implies that strong duality holds if there exists an x \in \operatorname(D) (where relint is the relative interior and D = \cap_^m \operatorname(f_i)) such that
:f_i(x) < 0, i = 1,\ldots,m and
:Ax = b.\,
If the first k constraints, f_1,\ldots,f_k are linear functions, then strong duality holds if there exists an x \in \operatorname(D) such that
:f_i(x) \le 0, i = 1,\ldots,k,
:f_i(x) < 0, i = k+1,\ldots,m, and
:Ax = b.\,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Slater's condition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.