翻訳と辞書 ・ Slater Library ・ Slater Martin ・ Slater Memorial Museum ・ Slater menswear ・ Slater Mill Historic Site ・ Slater Park ・ Slater Park Zoo ・ Slater Rocks ・ Slater Street ・ Slater Township, Cass County, Minnesota ・ Slater Walker ・ Slater Wilmhurst Ltd v Crown Group Custodian Ltd ・ Slater Young ・ Slater Zaleski ・ Slater's Ales ・ Slater's condition ・ Slater's rules ・ Slater, California ・ Slater, Colorado ・ Slater, Iowa ・ Slater, Kentucky ・ Slater, Missouri ・ Slater, Wyoming ・ Slater-Marietta, South Carolina ・ Slater-type orbital ・ Slatersville, Rhode Island ・ Slaterville, Virginia ・ Slater–Condon rules ・ SLATES ・ Slates (EP)
|
|
Slater's condition : ウィキペディア英語版 | Slater's condition
In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. Informally, Slater's condition states that the feasible region must have an interior point (see technical details below). Slater's condition is a specific example of a constraint qualification. In particular, if Slater's condition holds for the primal problem, then the duality gap is 0, and if the dual value is finite then it is attained. ==Details== Given the problem : : :: :: with convex (and therefore a convex optimization problem). Then Slater's condition implies that strong duality holds if there exists an (where relint is the relative interior and ) such that : and : If the first constraints, are linear functions, then strong duality holds if there exists an such that : : and :〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Slater's condition」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|